Preview

Meditsinskiy sovet = Medical Council

Advanced search

Effect of long-chain polyunsaturated fatty acids on infant development

https://doi.org/10.21518/2079-701X-2020-10-9-15

Abstract

The ω-6 and ω-3 long-chain polyunsaturated fatty acids (LC PUFA) play a significant structural and functional role in the child’s body, as they form part of all cell membranes. ω-3 LC PUFAs are incorporated into cell membranes, increasing membrane fluidity, changing functions of receptors and membrane-bound enzymes, and, therefore, improving the interactions of the cells with their environment. This is particularly important for the development of connections between neurons in the growing child’s brain, which occurs intensively at an early age. Studies have shown the delayed effect of (ω-6 and ω-3) LC PUFA on the improvement of visual and cognitive functions. They are also the precursor of lipid mediators. The balance created by mediators ratio in the diet plays a decisive role in the prevention of common chronic diseases, including obesity. Insufficient consumption and decreased synthesis of LC PUFAs from precursors (α-linolenic and linoleic acids) in the body as a result of changed activity of fatty acid desaturas makes it necessary to include them in the food ration of nursing mothers, which is important for breastfeeding children. Formula-fed infants also need supplements with LC PUFAs. For this purpose, doctors prescribe formulas enriched with arachidonic and docosahexaenoic acids among other ingredients. This recommendation is also important at the stage of expanding nutrition by adding supplementary foods, as it is during this period that rations are especially deficient in the LC PUFAs.

About the Author

O. N. Komarova
Pirogov Russian National Research Medical University
Russian Federation

Oxana N. Komarova, Cand. of Sci. (Med), Senior Researcher of the Gastroenterology Department, Separate structural subdivision "Veltischev Research and Clinical Institute for Pediatrics"

2, Taldomskaya St., Moscow, 125412



References

1. Innis S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr. 2014;99(3):734S–41S. doi: 10.3945/ajcn.113.072595.

2. Innis S.M. Essential Dietary Lipids, In: Present Knowledge in Nutrition. Seventh Edition. Washington, DC: ILSI Press; 1996, pp. 58–66.

3. Weiser M.J., Butt C.M., Mohajeri M.H. Docosahexaenoic acid and cognition throughout the lifespan. Nutrients. 2016;8:99. doi: 10.3390/nu8020099.

4. Simopoulos AP. Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet. World Rev Nutr Diet. 2011;102:10–21. doi: 10.1159/000327785.

5. Henriksen C., Haugholt K., Lindgren M., Aurvag A.K., Ronnestad A., Gronn M. et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics. 2008;121(6):1137–1145. doi: 10.1542/peds.2007-1511.

6. European Food Safety Authority (EFSA) Scientific Opinion on Nutrient Requirements and Dietary Intakes of Infants and Young Children in the European Union. EFSA Journal. 2013;11(10):3408. Available at: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2013.3408.

7. Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr. 1992;120(4 pt 2):S129–S138. doi: 10.1016/S0022-3476(05)81247-8.

8. Bradbury J. Docosahexaenoic acid (DHA): An ancient nutrient for the modern human brain. Nutrients. 2011;3(5):529–554. doi: 10.3390/nu3050529.

9. Fu Y., Liu X., Zhou B., Jiang A.C., Chai L. An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region. Public Health Nutr. 2016;19(15):2675–2687. doi: 10.1017/S1368980016000707.

10. Brenna J.T., Varamini B., Jensen R.G., Diersen-Schade D.A., Boettcher J.A., Arterburn L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85(6):1457–1464. doi: 10.1093/ajcn/85.6.1457.

11. Farquharson J., Jamieson E.C., Abbasi K.A., Patrick W.J., Logan R.W., Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child. 1995;72(3):198–203. doi: 10.1136/adc.72.3.198.

12. Arterburn L.M., Hall E.B., Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. 2006;83(6):1467S–1476S. doi: 10.1093/ajcn/83.6.1467S.

13. Brenna J.T., Salem N. Jr., Sinclair A.J., Cunnane S.C. Alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids. 2009;80(2–3):85–91. doi: 10.1016/j.plefa.2009.01.004.

14. Hague T.A., Christoffersen B.O. Effect of dietary fats on arachidonic acid and eicosapentaenoic acid biosynthesis and conversion to C22 fatty acids in isolated liver cells. Biochim Biophys Acta. 1984;796(2):205–217. doi: 10.1016/0005-2760(84)90349-7.

15. Pawlosky R.J., Hibbeln J.R., Novotny J.A., Salem N. Jr. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res. 2001;42(8):1257–1265. Available at: https://pubmed.ncbi.nlm.nih.gov/11483627/.

16. Koletzko B., Lien E., Agostoni C., Bohles H., Campoy C., Cetin I. et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: Review of current knowledge and consensus recommendations. J Perinat Med. 2008;36(1):5–14. doi: 10.1515/JPM.2008.001.

17. Brenna J.T., Lapillonne A. Background paper on fat and fatty acid requirements during pregnancy and lactation. Ann Nutr Metab. 2009;55(1–3):97–122. doi: 10.1159/000228998.

18. Friesen R.W., Innis S.M. Dietary arachidonic acid to EPA and DHA balance is increased among Canadian pregnant women with low fish intake. J Nutr. 2009;139(12):2344–2350. doi: 10.3945/jn.109.112565.

19. Sioen I., Devroe J., Inghels D., Terwecoren R., De Henauw S. The influence of n-3 PUFA supplements and n-3 PUFA enriched foods on the n-3 LC PUFA intake of Flemish women. Lipids. 2010;45(4):313–320. doi: 10.1007/s11745-010-3403-6.

20. Moltó-Puigmartí C., Plat J., Mensink R.P., Müller A., Jansen E., Zeegers M.P., Thijs C. FADS1 FADS2 Gene Variants Modify the Association Between Fish Intake and the Docosahexaenoic Acid Proportions in Human Milk. Am J Clin Nutr. 2010;91(5):1368–1376. doi: 10.3945/ajcn.2009.28789.

21. Forsyth S., Gautier S., Salem Jr.N. Estimated dietary intakes of arachidonic acid and docosahexaenoic acid in infants and young children living in developing countries. Ann Nutr Metab. 2016;69(1):64–74. doi: 10.1159/000448526.

22. Sioen I., Huybrechts I., Verbeke W., Camp J.V., De Henauw S. n-6 and n-3 PUFA intakes of pre-school children in Flanders, Belgium. Br J Nutr. 2007;98(4):819–825. doi: 10.1017/s0007114507756544.

23. Agostoni C., Caroli M. Role of fats in the first two years of life as related to later development of NCDs. Nutr Metab Cardiovasc Dis. 2012;22(10):775–780. doi: 10.1016/j.numecd.2012.05.004.

24. Harsløf L.B., Larsen L.H., Ritz C., Hellgren L. I., Michaelsen K. F., Vogel U., Lauritzen L. FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants. Am J Clin Nutr. 2013;97(6):1403–1410. doi: 10.3945/ajcn.113.058685.

25. Uusitalo L., Nevalainen J., Salminen I., Ovaskainen M.L., Kronberg-Kippilä C., Ahonen S., Niinistö S. et al. Fatty acids in serum and diet – a canonical correlation analysis among toddlers. Matern Child Nutr. 2013;9(3):381–395. doi: 10.1111/j.1740-8709.2011.00374.x.

26. Hoffman D.R., Theuer R.C., Castanada Y.S., Wheaton D.H., Bosworth R.G., O’Connor A.R. et al. Maturation of visual acuity is accelerated in breast-fed term infants fed baby food containing DHA-enriched egg yolk. J Nutr. 2004;134(9):2307–2313. doi: 10.1093/jn/134.9.2307.

27. Harauma A., Yasuda H., Hatanaka E., Nakamura M.T., Salem Jr. N., Moriguchi T. The essentiality of arachidonic acid in addition to docosahexaenoic acid for brain growth and function. Prostaglandins Leukot Essent Fatty Acids. 2017;116:9–18. doi: 10.1016/j.plefa.2016.11.002.

28. Dutta S., Sengupta P. Men and mice: Relating their ages. Life Sci. 2016;152:244–248. doi: 10.1016/j.lfs.2015.10.025.

29. Kannass K.N., Colombo J., Calrson S.E. Maternal DHA levels and toddler free-play attention. Dev Neuropsychol. 2009;34(2):159–174. doi: 10.1080/87565640802646734.

30. Helland I.B., Smith L., Saarem K., Saugstad O.D., Drevon C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111(1): e39–e44. doi: 10.1542/peds.111.1.e39.

31. Willatts P., Forsyth S., Agostoni C., Casaer P., Riva E., Boehm G. Effects of longchain PUFA supplementation in infant formula on cognitive function in later childhood. Am J Clin Nutr. 2013;98(2):536S–42S. doi: 10.3945/ajcn.112.038612.

32. Brenna J.T., Carlson S.E. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development. J Hum Evol. 2014;77:99–106. doi: 10.1016/j.jhevol.2014.02.017.

33. Lassek W.D., Gaulin S.J. Maternal milk DHA content predicts cognitive performance in a sample of 28 nations. Matern Child Nutr. 2015;11(4):773–779. doi: 10.1111/mcn.12060.

34. Hoffman D.R., Theuer R.C., Castañeda Y.S., Wheaton D.H., Bosworth R.G., O’Connor A.R. et al. Maturation of Visual Acuity Is Accelerated in Breast-Fed Term Infants Fed Baby Food Containing DHA-enriched Egg Yolk. J Nutr. 2004;134(9):2307–2313. doi: 10.1093/jn/134.9.2307.

35. Drover J.R., Felius J., Hoffman D.R., Castañeda Y.S., Garfield S., Wheaton D.H., Birch EE. A randomized trial of DHA intake during infancy: school readiness and receptive vocabulary at 2-3.5 years of age. Early Hum Dev. 2012;88(11):885–891. doi: 10.1016/j.earlhumdev.2012.07.007.

36. Codex Alimentarius Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants. Amended. 2015. Available at: www.fao.org/input/download/standards/288/CXS_072e_2015.pdf.

37. Hoffman D.R., Boettcher J.A., Diersen-Schade D.A. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids. 2009;81(2–3):151–158. doi: 10.1016/j.plefa.2009.05.003.

38. Innis S.M. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Maternal & child nutrition. 2011;7(2):112–123. doi: 10.1111/j.1740-8709.2011.00318.x.

39. Woo J.G., Martin L.J. Does Breastfeeding Protect Against Childhood Obesity? Moving Beyond Observational Evidence. Curr Obes Rep. 2015;4(2):207–216. doi: 10.1007/s13679-015-0148-9.

40. Berry R., Jeffery E., Rodeheffer M.S. Weighing in on adipocyte precursors. Cell Metab. 2014;19(1):8–20. doi: 10.1016/j.cmet.2013.10.003.

41. Muhlhausler B.S., Ailhaud G.P. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes. 2013;20(1):56–61. doi: 10.1097/MED.0b013e32835c1ba7.

42. Kozak L.P., Newman S., Chao P.M., Mendoza T., Koza R.A. The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PloS One. 2010;5(6):e11015. doi: 10.1371/journal.pone.0011015.

43. Heerwagen M.J., Stewart M.S., de la Houssaye B.A., Janssen R.C., Friedman J.E. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice. PloS One. 2013;8(6):e67791. doi: 10.1371/journal.pone.0067791.

44. Rudolph M.C., Young B.E., Lemas D.J. Palmer C.E., Hernandez T.L., Barbour L.A. et al. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI. Int J Obes (Lond). 2017;41(4):510–517. doi: 10.1038/ijo.2016.211.

45. Pittaluga E., Vernal P., Llanos A., Vega S., Henrriquez M.T., Morgues M. et al. Benefits of supplemented preterm formulas on insulin sensitivity and body composition after discharge from the neonatal intensive care unit. J Pediatr. 2011;159(6):926–32.e2. doi: 10.1016/j.jpeds.2011.06.002.

46. Donahue S.M., Rifas-Shiman S.L., Gold D.R., Jouni Z.E., Gillman M.W., Oken E. Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am J Clin Nutr. 2011;93(4):780–788. doi: 10.3945/ajcn.110.005801.


Review

For citations:


Komarova ON. Effect of long-chain polyunsaturated fatty acids on infant development. Meditsinskiy sovet = Medical Council. 2020;(10):9-15. (In Russ.) https://doi.org/10.21518/2079-701X-2020-10-9-15

Views: 686


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)