Патофизиологические нарушения в метаболизме железа при развитии ожирения и метаболического синдрома
https://doi.org/10.21518/2079-701X-2022-16-6-264-272
Аннотация
Ожирение и метаболический синдром являются одной из основных проблем общественного здравоохранения в XXI в. из-за их распространенности. Неалкогольная жировая болезнь печени, дислипидемия, сахарный диабет 2-го типа, артериальная гипертензия, хроническое воспаление и анемия – сопутствующие ожирению неинфекционные заболевания. При ожирении возникают нарушение метаболизма и дефицит железа, что еще больше способствует развитию метаболических расстройств. Железо является вторым по распространенности металлом на Земле, при этом его дефицит является наиболее распространенным нарушением питания, а его биодоступность снижена из-за образования им нерастворимых оксидов. Метаболизм железа в организме связан с образованием активных форм кислорода, участвующих в процессах липопероксидации, и регулируется в организме человека на всех уровнях, а нарушение регуляции любого этапа метаболизма может приводить к дефициту железа и развитию анемии, связанному с ожирением. В этой обзорной статье суммируются данные о молекулярных и клеточных нарушениях в обмене железа при ожирении и метаболическом синдроме. Целью нашего исследования явилось изучение данных литературы о патофизиологических нарушениях в метаболизме железа при развитии ожирения и метаболического синдрома. В будущем потребуются дополнительные исследования по изучению метаболизма железа при ожирении с целью профилактического и терапевтического воздействия на него. До конца не изучена роль окислительного стресса при нарушении обмена железа при ожирении, при этом дефицит железа способствует усилению процессов липопероксидации при антиоксидантной недостаточности. В таких условиях окислительный стресс может вызывать повреждение клеток и разрушать эритроциты. Возникает вопрос: может ли восстановление гомеостаза железа при ожирении улучшить метаболические, воспалительные расстройства и уменьшить проявление окислительного стресса, став новым инновационным подходом к лечению сопутствующих метаболических заболеваний, связанных с ожирением.
Ключевые слова
Об авторах
О. В. СмирноваРоссия
д.м.н., доцент, заведующая лабораторией клинической патофизиологии,
660022, Красноярск, ул. Партизана Железняка, д. 3Г
О. Л. Москаленко
Россия
к.б.н., старший научный сотрудник лаборатории клинической патофизиологии,
660022, Красноярск, ул. Партизана Железняка, д. 3Г
Э. В. Каспаров
Россия
д.м.н., профессор, директор, Научно-исследовательский институт медицинских проблем Севера – обособленное подразделение Федерального исследовательского центра «Красноярский научный центр Сибирского отделения Российской академии наук»;
заместитель директора, Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»;
660022, Красноярск, ул. Партизана Железняка, д. 3Г
И. Э. Каспарова
Россия
к.м.н., старший научный сотрудник лаборатории клинической патофизиологии,
660022, Красноярск, ул. Партизана Железняка, д. 3Г
Список литературы
1. Martos-Moreno G.Á., Gil-Campos M., Bueno G., Bahillo P., Bernal S., Feliu A. et al. Obesity associated metabolic impairment is evident at early ages: Spanish collaborative study. Nutr Hosp. 2014;30(4):787– 793. (In Spanish). https://doi.org/10.3305/nh.2014.30.4.7661.
2. Reaven G.M. Insulin resistance and compensatory hyperinsulinemia: role in hypertension, dyslipidemia, and coronary heart disease. Am Heart J. 1991;121(4 Pt. 2):1283–1288. https://doi.org/10.1016/0002-8703(91)90434-j.
3. Bussler S., Penke M., Flemming G., Elhassan Y.S., Kratzsch J., Sergeyev E. et al. Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm Res Paediatr. 2017;88(3–4):181–193. https://doi.org/10.1159/000479510.
4. DeBoer M.D. Assessing and Managing the Metabolic Syndrome in Children and Adolescents. Nutrients. 2019;11(8):1788. https://doi.org/10.3390/nu11081788.
5. Gepstein V., Weiss R. Obesity as the Main Risk Factor for Metabolic Syndrome in Children. Front Endocrinol (Lausanne). 2019;10:568. https://doi.org/10.3389/fendo.2019.00568.
6. Weihe P., Weihrauch-Blüher S. Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Curr Obes Rep. 2019;8(4):472–479. https://doi.org/10.1007/s13679-019-00357-x.
7. Speiser P.W., Rudolf M.C., Anhalt H., Camacho-Hubner C., Chiarelli F., Eliakim A. et al. Childhood obesity. J Clin Endocrinol Metab. 2005;90(3):1871–1887. https://doi.org/10.1210/jc.2004-1389.
8. Han J.C., Lawlor D.A., Kimm S.Y. Childhood obesity. Lancet. 2010;375 (9727):1737–1748. https://doi.org/10.1016/S0140-6736(10)60171-7.
9. Juhola J., Magnussen C.G., Viikari J.S., Kähönen M., Hutri-Kähönen N., Jula A. et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr. 2011;159(4):584–590. https://doi.org/10.1016/j.jpeds.2011.03.021.
10. Pettitt D.J., Talton J., Dabelea D., Divers J., Imperatore G., Lawrence J.M. et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014;37(2):402–408. https://doi.org/10.2337/dc13-1838.
11. Han J., Seaman W.E., Di X., Wang W., Willingham M., Torti F.M., Torti S.V. Iron uptake mediated by binding of H-ferritin to the TIM-2 receptor in mouse cells. PLoS ONE. 2011;6(8):e23800. https://doi.org/10.1371/journal.pone.0023800.
12. Nead K.G., Halterman J.S., Kaczorowski J.M., Auinger .P, Weitzman M. Overweight children and adolescents: a risk group for iron deficiency. Pediatrics. 2004;114(1):104–108. https://doi.org/10.1542/peds.114.1.104.
13. Luca P.D., Birken C., Grewal P., Dettmer E., Hamilton J.K. Complex Obesity. Curr Pediatr Rev. 2012;8:179–187. https://doi.org/10.2174/157339612800681316.
14. Gurnani M., Birken C., Hamilton J. Childhood Obesity: Causes, Consequences, and Management. Pediatr Clin North Am. 2015;62(4):821–840. https://doi.org/10.1016/j.pcl.2015.04.001.
15. Juonala M., Viikari J.S., Rönnemaa T., Helenius H., Taittonen L., Raitakari O.T. Elevated blood pressure in adolescent boys predicts endothelial dysfunction: the cardiovascular risk in young Finns study. Hypertension. 2006;48(3):424–430. https://doi.org/10.1161/01.YP.0000237666.78217.47.
16. Park H.Y., Kwon H.M., Lim H.J., Hong B.K., Lee J.Y., Park B.E. et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102. https://doi.org/10.1038/emm.2001.17.
17. Landgraf K., Friebe D., Ullrich T., Kratzsch J., Dittrich K., Herberth G. et al. Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab. 2012;97(4):E556–564. https://doi.org/10.1210/jc.2011-2937.
18. Bruyndonckx L., Hoymans V.Y., Lemmens K., Ramet J., Vrints C.J. Childhood obesity-related endothelial dysfunction: an update on pathophysiological mechanisms and diagnostic advancements. Pediatr Res. 2016;79(6):831–837. https://doi.org/10.1038/pr.2016.22.
19. Yu J.J., Yeom H.H., Chung S., Park Y., Lee D.H. Left atrial diameters in overweight children with normal blood pressure. J Pediatr. 2006;148(3):321–325. https://doi.org/10.1016/j.jpeds.2005.10.042.
20. Atabek M.E., Akyüz E., Selver Eklioğlu B., Çimen D. The relationship between metabolic syndrome and left ventricular mass index in obese children. J Clin Res Pediatr Endocrinol. 2011;3(3):132–138. https://doi.org/10.4274/jcrpe.v3i3.26.
21. Cote A.T., Harris K.C., Panagiotopoulos C., Sandor G.G., Devlin A.M. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol. 2013;62(15):1309–1319. https://doi.org/10.1016/j.jacc.2013.07.042.
22. Friedemann C., Heneghan C., Mahtani K., Thompson M., Perera R., Ward A.M. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ. 2012;345:e4759. https://doi.org/10.1136/bmj.e4759.
23. De Pergola G., De Mitrio V., Giorgino F., Sciaraffia M., Minenna A., Di Bari L. et al. Increase in both pro-thrombotic and anti-thrombotic factors in obese premenopausal women: relationship with body fat distribution. Int J Obes Relat Metab Disord. 1997;21(7):527–535. https://doi.org/10.1038/sj.ijo.0800435.
24. Cigolini M., Targher G., Bergamo Andreis I.A., Tonoli M., Agostino G., De Sandre G. Visceral fat accumulation and its relation to plasma hemostatic factors in healthy men. Arterioscler Thromb Vasc Biol. 1996;16(3):368–374. https://doi.org/10.1161/01.atv.16.3.368.
25. Mavri A., Alessi M.C., Bastelica D., Geel-Georgelin O., Fina F., Sentocnik J.T. et al. Subcutaneous abdominal, but not femoral fat expression of plasminogen activator inhibitor-1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss. Diabetologia. 2001;44(11):2025–2031. https://doi.org/10.1007/s001250100007.
26. Lowe G.D., Rumley A., Woodward M., Reid E., Rumley J. Activated protein C resistance and the FV:R506Q mutation in a random population sample – associations with cardiovascular risk factors and coagulation variables. Thromb Haemost. 1999;81(6):918–924. Available at: https://pubmed.ncbi.nlm.nih.gov/10404768/.
27. Kruszynska Y.T., Yu J.G., Olefsky J.M., Sobel B.E. Effects of troglitazone on blood concentrations of plasminogen activator inhibitor 1 in patients with type 2 diabetes and in lean and obese normal subjects. Diabetes. 2000;49(4):633–639. https://doi.org/10.2337/diabetes.49.4.633.
28. Westerbacka J., Yki-Järvinen H., Turpeinen A., Rissanen A., Vehkavaara S., Syrjälä M., Lassila R. Inhibition of platelet-collagen interaction: an in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler Thromb Vasc Biol. 2002;22(1):167–172. https://doi.org/10.1161/hq0102.101546.
29. De Pergola G., Pannacciulli N. Coagulation and fibrinolysis abnormalities in obesity. J Endocrinol Invest. 2002;25(10):899–904. https://doi.org/10.1007/BF03344054.
30. Rogero M.M., Calder P.C. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients. 2018;10(4):432. https://doi.org/10.3390/nu10040432.
31. Luo X., Li Y., Yang P., Chen Y., Wei L., Yu T. et al. Obesity induces preadipocyte CD36 expression promoting inflammation via the disruption of lysosomal calcium homeostasis and lysosome function. EBioMedicine. 2020;56:102797. https://doi.org/10.1016/j.ebiom.2020.102797.
32. Pessentheiner A.R., Ducasa G.M., Gordts P.L.S.M. Proteoglycans in ObesityAssociated Metabolic Dysfunction and Meta-Inflammation. Front Immunol. 2020;11:769. https://doi.org/10.3389/fimmu.2020.00769.
33. Kataru R.P., Park H.J., Baik J.E., Li C., Shin J., Mehrara B.J. Regulation of Lymphatic Function in Obesity. Front Physiol. 2020;11:459. https://doi.org/10.3389/fphys.2020.00459.
34. Benova A., Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne). 2020;11:294. https://doi.org/10.3389/fendo.2020.00294.
35. Ellulu M.S., Patimah I., Khaza’ai H., Rahmat A., Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–863. https://doi.org/10.5114/aoms.2016.58928.
36. Zorena K., Jachimowicz-Duda O., Ślęzak D., Robakowska M., Mrugacz M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int J Mol Sci. 2020;21(10):3570. https://doi.org/10.3390/ijms21103570.
37. Rivera P., Martos-Moreno G.Á., Barrios V., Suárez J., Pavón F.J., Chowen J.A. et al. A novel approach to childhood obesity: circulating chemokines and growth factors as biomarkers of insulin resistance. Pediatr Obes. 2019;14(3):e12473. https://doi.org/10.1111/ijpo.12473.
38. Hagman E., Besor O., Hershkop K., Santoro N., Pierpont B., Mata M. et al. Relation of the degree of obesity in childhood to adipose tissue insulin resistance. Acta Diabetol. 2019;56(2):219–226. https://doi.org/10.1007/s00592-018-01285-3.
39. Mărginean C.O., Meliţ L.E., Huțanu A., Ghiga D.V., Săsăran M.O. The adipokines and inflammatory status in the era of pediatric obesity. Cytokine. 2020;126:154925. https://doi.org/10.1016/j.cyto.2019.154925.
40. Alissa E.M., Sutaih R.H., Kamfar H.Z., Alagha A.E., Marzouki Z.M. Serum progranulin levels in relation to insulin resistance in childhood obesity. J Pediatr Endocrinol Metab. 2017;30(12):1251–1256. https://doi.org/10.1515/jpem-2017-0321.
41. Mărginean C.O., Meliţ L.E., Ghiga D.V., Mărginean M.O. Early Inflammatory Status Related to Pediatric Obesity. Front Pediatr. 2019;7:241. https://doi.org/10.3389/fped.2019.00241.
42. Hussain T., Tan B., Yin Y., Blachier F., Tossou M.C., Rahu N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev. 2016;7432797. https://doi.org/10.1155/2016/7432797.
43. Biswas S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev. 2016;5698931. https://doi.org/10.1155/2016/5698931.
44. Avelar T.M., Storch A.S., Castro L.A., Azevedo G.V.M.M., Ferraz L., Lopes P.F. Oxidative stress in the pathophysiology of metabolic syndrome: Which mechanisms are involved? J Bras Patol Med Lab. 2015;51(4):231–239. https://doi.org/10.5935/1676-2444.20150039.
45. Lechuga-Sancho A.M., Gallego-Andujar D., Ruiz-Ocaña P., Visiedo F.M., Saez-Benito A., Schwarz M. et al. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age. PLoS ONE. 2018;13(1):e0191547. https://doi.org/10.1371/journal.pone.0191547.
46. Kilic E., Özer Ö.F., Erek Toprak A., Erman H., Torun E., Kesgin Ayhan S., Caglar H.G. et al. Oxidative Stress Status in Childhood Obesity: A Potential Risk Predictor. Med Sci Monit. 2016;22:3673–3679. https://doi.org/10.12659/msm.897965.
47. Correia-Costa L., Sousa T., Morato M., Cosme D., Afonso J., Areias J.C. et al. Oxidative stress and nitric oxide are increased in obese children and correlate with cardiometabolic risk and renal function. Br J Nutr. 2016;116(5):805–815. https://doi.org/10.1017/S0007114516002804.
48. Leo F., Rossodivita A.N., Segni C.D., Raimondo S., Canichella S., Silvestrini A. et al. Frailty of Obese Children: Evaluation of Plasma Antioxidant Capacity in Pediatric Obesity. Exp Clin Endocrinol Diabetes. 2016;124(8):481–486. https://doi.org/10.1055/s-0042-105280.
49. Stenzel A.P., Carvalho R., Jesus P., Bull A., Pereira S., Saboya C., Ramalho A. Serum Antioxidant Associations with Metabolic Characteristics in Metabolically Healthy and Unhealthy Adolescents with Severe Obesity: An Observational Study. Nutrients. 2018;10(2):150. https://doi.org/10.3390/nu10020150.
50. Jais A., Einwallner E., Sharif O., Gossens K., Lu T.T., Soyal S.M. et al. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell. 2014;158(1):25–40. https://doi.org/10.1016/j.cell.2014.04.043.
51. Carmona-Montesinos E., Velazquez-Perez R., Pichardo Aguirre E., RivasArancibia S. Obesity, Oxidative Stress, and Their Effect on Serum Heme Oxygenase-1 Concentrations and Insulin in Children Aged 3 to 5 Years in a Pediatric Hospital of the Ministry of Health CDMX. Child Obes. 2016;12(6):474–481. https://doi.org/10.1089/chi.2016.0155.
52. Tu T.H., Joe Y., Choi H.S., Chung H.T., Yu R. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching. Mediators Inflamm. 2014;290708. https://doi.org/10.1155/2014/290708.
53. Peterson S.J., Rubinstein R., Faroqui M., Raza A., Boumaza I., Zhang Y. et al. Positive Effects of Heme Oxygenase Upregulation on Adiposity and Vascular Dysfunction: Gene Targeting vs. Pharmacologic Therapy. Int J Mol Sci. 2019;20(10):2514. https://doi.org/10.3390/ijms20102514.
54. Mishra J., Simonsen R., Kumar N. Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity. J Biol Chem. 2019;294(48):18337–18348. https://doi.org/10.1074/jbc.RA119.007758.
55. Moreno-Navarrete J.M., Rodríguez A., Ortega F., Becerril S., SabaterMasdeu M., Latorre J. et al. Increased adipose tissue heme levels and exportation are associated with altered systemic glucose metabolism. Sci Rep. 2017;7(1):5305. https://doi.org/10.1038/s41598-017-05597-2.
56. Sonnweber T., Ress C., Nairz M., Theurl I., Schroll A., Murphy A.T. et al. High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption. J Nutr Biochem. 2012;23(12):1600–1608. https://doi.org/10.1016/j.jnutbio.2011.10.013.
57. Briffa J.F., Grinfeld E., Jenkin K.A., Mathai M.L., Poronnik P., McAinch A.J., Hryciw D.H. Diet induced obesity in rats reduces NHE3 and Na(+) /K(+) -ATPase expression in the kidney. Clin Exp Pharmacol Physiol. 2015;42(10):1118–1126. https://doi.org/10.1111/1440-1681.12452.
58. Noh H., Paik H.Y., Kim J., Chung J. The alteration of zinc transporter gene expression is associated with inflammatory markers in obese women. Biol Trace Elem Res. 2014;158(1):1–8. https://doi.org/10.1007/s12011-014-9902-1.
59. Marreiro D.N., Fisberg M., Cozzolino S.M. Zinc nutritional status in obese children and adolescents. Biol Trace Elem Res. 2002;86(2):107–122. https://doi.org/10.1385/bter:86:2:107.
60. Cruz K.J.C., de Oliveira A.R.S., Morais J.B.S., Severo J.S., Mendes P.M.V., de Sousa Melo S.R. et al. Zinc and Insulin Resistance: Biochemical and Molecular Aspects. Biol Trace Elem Res. 2018;186(2):407–412. https://doi.org/10.1007/s12011-018-1308-z.
61. Ikeda Y., Watanabe H., Shiuchi T., Hamano H., Horinouchi Y., Imanishi M. et al. Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice. Diabetologia. 2020;63(8):1588–1602. https://doi.org/10.1007/s00125-020-05153-0.
62. Suárez-Ortegón M.F., Echeverri I., Prats-Puig A., Bassols J., CarrerasBadosa G., López-Bermejo A., Fernández-Real J.M. Iron Status and Metabolically Unhealthy Obesity in Prepubertal Children. Obesity (Silver Spring). 2019;27(4):636–644. https://doi.org/10.1002/oby.22425.
63. Jiang C., Zhang S., Li D., Chen L., Zhao Y., Mei G. et al. Impaired ferritinophagy flux induced by high fat diet mediates hepatic insulin resistance via endoplasmic reticulum stress. Food Chem Toxicol. 2020;140:111329. https://doi.org/10.1016/j.fct.2020.111329.
64. Freixenet N., Remacha A., Berlanga E., Caixàs A., Giménez-Palop O., Blanco-Vaca F. et al. Serum soluble transferrin receptor concentrations are increased in central obesity. Results from a screening programme for hereditary hemochromatosis in men with hyperferritinemia. Clin Chim Acta. 2009;400(1–2):111–116. https://doi.org/10.1016/j.cca.2008.10.019.
65. Fernández-Cao J.C., Arija V., Aranda N., Basora J., Diez-Espino J., Estruch R. et al. Soluble transferrin receptor and risk of type 2 diabetes in the obese and nonobese. Eur J Clin Invest. 2017;47(3):221–230. https://doi.org/10.1111/eci.12725.
66. Moreno-Navarrete J.M., Ortega F.J., Bassols J., Castro A., Ricart W., Fernández-Real J.M. Association of circulating lactoferrin concentration and 2 nonsynonymous LTF gene polymorphisms with dyslipidemia in men depends on glucose-tolerance status. Clin Chem. 2008;54(2):301–309. https://doi.org/10.1373/clinchem.2007.095943.
67. Moreno-Navarrete J.M., Ortega F.J., Bassols J., Ricart W., FernándezReal J.M. Decreased circulating lactoferrin in insulin resistance and altered glucose tolerance as a possible marker of neutrophil dysfunction in type 2 diabetes. J Clin Endocrinol Metab. 2009;94(10):4036–4044. https://doi.org/10.1210/jc.2009-0215.
68. Catalán V., Gómez-Ambrosi J., Rodríguez A., Ramírez B., Silva C., Rotellar F. et al. Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. J Mol Med (Berl). 2009;87(8):803–813. https://doi.org/10.1007/s00109-009-0486-8.
69. Ishii A., Katsuura G., Imamaki H., Kimura H., Mori K.P., Kuwabara T. et al. Obesity-promoting and anti-thermogenic effects of neutrophil gelatinase-associated lipocalin in mice. Sci Rep. 2017;7(1):15501. https://doi.org/10.1038/s41598-017-15825-4.
70. Kanaka-Gantenbein C., Margeli A., Pervanidou P., Sakka S., Mastorakos G., Chrousos G.P., Papassotiriou I. Retinol-binding protein 4 and lipocalin-2 in childhood and adolescent obesity: when children are not just “small adults”. Clin Chem. 2008;54(7):1176–1182. https://doi.org/10.1373/clinchem.2007.099002.
71. Bartolome F., Antequera D., de la Cueva M., Rubio-Fernandez M., Castro N., Pascual C. et al. Endothelial-specific deficiency of megalin in the brain protects mice against high-fat diet challenge. J Neuroinflammation. 2020;17(1):22. https://doi.org/10.1186/s12974-020-1702-2.
72. Pomplun D., Voigt A., Schulz T.J., Thierbach R., Pfeiffer A.F., Ristow M. Reduced expression of mitochondrial frataxin in mice exacerbates dietinduced obesity. Proc Natl Acad Sci U S A. 2007;104(15):6377–6381. https://doi.org/10.1073/pnas.0611631104.
73. Chiellini C., Santini F., Marsili A., Berti P., Bertacca A., Pelosini C. et al. Serum haptoglobin: a novel marker of adiposity in humans. J Clin Endocrinol Metab. 2004;89(6):2678–2683. https://doi.org/10.1210/jc.2003-031965.
74. De Pergola G., Di Roma P., Paoli G., Guida P., Pannacciulli N., Giorgino R. Haptoglobin serum levels are independently associated with insulinemia in overweight and obese women. J Endocrinol Invest. 2007;30(5):399–403. https://doi.org/10.1007/BF03346317.
75. Chiellini C., Bertacca A., Novelli S.E., Görgün C.Z., Ciccarone A., Giordano A. et al. Obesity modulates the expression of haptoglobin in the white adipose tissue via TNFalpha. J Cell Physiol. 2002;190(2):251–258. https://doi.org/10.1002/jcp.10061.
76. Vázquez-Moreno M., Locia-Morales D., Perez-Herrera A., Gomez-Diaz R.A., Gonzalez-Dzib R., Valdez-González A.L. et al. Causal Association of Haptoglobin With Obesity in Mexican Children: A Mendelian Randomization Study. J Clin Endocrinol Metab. 2020;105(7):dgaa213. https://doi.org/10.1210/clinem/dgaa213.
77. Aguiar L., Marinho C., Martins R., Alho I., Ferreira J., Levy P. et al. Interaction between HFE and haptoglobin polymorphisms and its relation with plasma glutathione levels in obese children. Cell Mol Biol (Noisy-le-grand). 2019;65(2):69–74. Available at: https://pubmed.ncbi.nlm.nih.gov/30860476/.
78. Fjeldborg K., Pedersen S.B., Møller H.J., Christiansen T., Bennetzen M., Richelsen B. Human adipose tissue macrophages are enhanced but changed to an anti-inflammatory profile in obesity. J Immunol Res. 2014;309548. https://doi.org/10.1155/2014/309548.
79. Kazankov K., Møller H.J., Lange A., Birkebaek N.H., Holland-Fischer P., Solvig J. et al. The macrophage activation marker sCD163 is associated with changes in NAFLD and metabolic profile during lifestyle intervention in obese children. Pediatr Obes. 2015;10(3):226–233. https://doi.org/10.1111/ijpo.252.
80. Franklin J.L., Bennett W.L., Messina J.L. Insulin attenuates TNFα-induced hemopexin mRNA: An anti-inflammatory action of insulin in rat H4IIE hepatoma cells. Biochem Biophys Rep. 2017;9:211–216. https://doi.org/10.1016/j.bbrep.2016.12.013.
81. Lawson H.A., Zayed M., Wayhart J.P., Fabbrini E., Love-Gregory L., Klein S., Semenkovich C.F. Physiologic and genetic evidence links hemopexin to triglycerides in mice and humans. Int J Obes (Lond). 2017;41(4):631–638. https://doi.org/10.1038/ijo.2017.19.
82. Lee S. The genetic and epigenetic association of LDL Receptor Related Protein 1B (LRP1B) gene with childhood obesity. Sci Rep. 2019;9(1):1815. https://doi.org/10.1038/s41598-019-38538-2.
83. Altunkaynak B.Z., Ozbek E., Altunkaynak M.E. A stereological and histological analysis of spleen on obese female rats, fed with high fat diet. Saudi Med J. 2007;28(3):353–357. Available at: https://pubmed.ncbi.nlm.nih.gov/17334458/.
84. Rebours V., Garteiser P., Ribeiro-Parenti L., Cavin J.B., Doblas S., Pagé G. et al. Obesity-induced pancreatopathy in rats is reversible after bariatric surgery. Sci Rep. 2018;8(1):16295. https://doi.org/10.1038/s41598-018-34515-3.
85. He Y., Ren L., Zhang Q., Zhang M., Shi J., Hu W., Peng H. Deficient serum furin predicts risk of abdominal obesity: findings from a prospective cohort of Chinese adults. Postgrad Med J. 2021;97(1146):234–238. https://doi.org/10.1136/postgradmedj-2019-137422.
86. Gajewska J., Ambroszkiewicz J., Klemarczyk W., Głąb-Jabłońska E., Weker H., Chełchowska M. Ferroportin-Hepcidin Axis in Prepubertal Obese Children with Sufficient Daily Iron Intake. Int J Environ Res Public Health. 2018;15(10):2156. https://doi.org/10.3390/ijerph15102156.
87. Luciani N., Brasse-Lagnel C., Poli M., Anty R., Lesueur C., Cormont M. et al. Hemojuvelin: a new link between obesity and iron homeostasis. Obesity (Silver Spring). 2011;19(8):1545–1551. https://doi.org/10.1038/oby.2011.12.
88. Blázquez-Medela A.M., Jumabay M., Boström K.I. Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obes Rev. 2019;20(5):648–658. https://doi.org/10.1111/obr.12822.
89. Böttcher Y., Unbehauen H., Klöting N., Ruschke K., Körner A., Schleinitz D. et al. Adipose tissue expression and genetic variants of the bone morphogenetic protein receptor 1A gene (BMPR1A) are associated with human obesity. Diabetes. 2009;58(9):2119–2128. https://doi.org/10.2337/db08-1458.
90. Folgueras A.R., Freitas-Rodríguez S., Ramsay A.J., Garabaya C., Rodríguez F., Velasco G., López-Otín C. Matriptase-2 deficiency protects from obesity by modulating iron homeostasis. Nat Commun. 2018;9(1):1350. https://doi.org/10.1038/s41467-018-03853-1.
91. Seong H.A., Manoharan R., Ha H. Smad proteins differentially regulate obesity-induced glucose and lipid abnormalities and inflammation via class-specific control of AMPK-related kinase MPK38/MELK activity. Cell Death Dis. 2018;9(5):471. https://doi.org/10.1038/s41419-018-0489-x.
92. Katz O., Stuible M., Golishevski N., Lifshitz L., Tremblay M.L., Gassmann M. et al. Erythropoietin treatment leads to reduced blood glucose levels and body mass: insights from murine models. J Endocrinol. 2010;205(1):87–95. https://doi.org/10.1677/JOE-09-0425.
93. Teng R., Gavrilova O., Suzuki N., Chanturiya T., Schimel D., Hugendubler L. et al. Disrupted erythropoietin signalling promotes obesity and alters hypothalamus proopiomelanocortin production. Nat Commun. 2011;2:520. https://doi.org/10.1038/ncomms1526.
94. Liu Y., Luo B., Shi R., Wang J., Liu Z., Liu W. et al. Nonerythropoietic Erythropoietin-Derived Peptide Suppresses Adipogenesis, Inflammation, Obesity and Insulin Resistance. Sci Rep. 2015;5:15134. https://doi.org/10.1038/srep15134.
95. Liu Y., Xu D., Yin C., Wang S., Wang M., Xiao Y. IL-10/STAT3 is reduced in childhood obesity with hypertriglyceridemia and is related to triglyceride level in diet-induced obese rats. BMC Endocr Disord. 2018;18(1):39. https://doi.org/10.1186/s12902-018-0265-z.
96. Wunderlich C.M., Hövelmeyer N., Wunderlich F.T. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAKSTAT. 2013;2(2):e23878. https://doi.org/10.4161/jkst.23878.
97. Lee Y.S., Riopel M., Cabrales P., Bandyopadhyay G.K. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci Adv. 2019;5(7):eaaw4176. https://doi.org/10.1126/sciadv.aaw4176.
98. Jun J.C., Devera R., Unnikrishnan D., Shin M.K., Bevans-Fonti S., Yao Q. et al. Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis. J Mol Med (Berl). 2017;95(3):287–297. https://doi.org/10.1007/s00109-016-1480-6.
99. Saito H., Tanaka T., Sugahara M., Tanaka S., Fukui K., Wakashima T., Nangaku M. Inhibition of prolyl hydroxylase domain (PHD) by JTZ-951 reduces obesity-related diseases in the liver, white adipose tissue, and kidney in mice with a high-fat diet. Lab Invest. 2019;99(8):1217–1232. https://doi.org/10.1038/s41374-019-0239-4.
100. Lee Y.S., Kim J.W., Osborne O., Oh D.Y., Sasik R., Schenk S. et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339–1352. https://doi.org/10.1016/j.cell.2014.05.012.
101. López P., Castro A., Flórez M., Miranda K., Aranda P., Sánchez-González C. et al. miR-155 and miR-122 Expression of Spermatozoa in Obese Subjects. Front Genet. 2018;9:175. https://doi.org/10.3389/fgene.2018.00175.
102. Москаленко О.Л., Смирнова О.В., Каспаров Э.В., Иванова Е.Б. Особенности полиморфизма генов PNPLA3 (rs738409), TM6SF2 (rs58542926), MBOAT7 (rs641738) как способ диагностики иммунопатологии при жировом гепатозе. Российский аллергологический журнал. 2018;15(1S):64–66. https://doi.org/10.36691/RJA52.
103. Москаленко О.Л., Смирнова О.В., Каспаров Э.В., Зайцева О.И. Диагностика метаболического синдрома на современном этапе. Siberian Journal of Life Sciences and Agriculture. 2019;11(5):94–100. https://doi.org/10.12731/2658-6649-2019-11-5-94-100.
104. Смирнова О., Цуканов В., Синяков А., Москаленко О., Елманова Н., Овчаренко Е., Титова Н. Показатели перекисного окисления липидов и антиоксидантной защиты при хроническом атрофическом гастрите, ассоциированном с Helicobacter Pylori. Врач. 2019;30(11):41–45. https://doi.org/10.29296/25877305-2019-11-08.
105. Москаленко О.Л., Смирнова О.В., Каспаров Э.В. Ожирение в различных этнических популяциях. Якутский медицинский журнал. 2019;(3):101–104. https://doi.org/10.25789/YMJ.2019.67.28.
Рецензия
Для цитирования:
Смирнова ОВ, Москаленко ОЛ, Каспаров ЭВ, Каспарова ИЭ. Патофизиологические нарушения в метаболизме железа при развитии ожирения и метаболического синдрома. Медицинский Совет. 2022;(6):264-272. https://doi.org/10.21518/2079-701X-2022-16-6-264-272
For citation:
Smirnova OV, Moskalenko OL, Kasparov EV, Kasparova IE. Pathophysiological disorders in iron metabolism in the development of obesity and metabolic syndrome. Meditsinskiy sovet = Medical Council. 2022;(6):264-272. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-6-264-272